Exam Algebraic Structures
 June 21st, 2018, 14:00-17:00, Kapteynborg 0013.

This exam consists of three exercises, and each of them has six subproblems. You get 6 points for free, and you can score 3 points for every correctly answered subproblem. In this way you can obtain at most 60 point for the total exam. Only answers given with a complete argument will be considered!
(1) Consider the subring $\mathbb{Z}[\sqrt{3}]:=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\} \subset \mathbb{C}$.
(a) Find an element $\neq \pm 1$ in $\mathbb{Z}[\sqrt{3}]^{\times}$.
(b) Show that $\mathbb{Z}[\sqrt{3}]^{\times}$is an infinite set.
(c) Prove that the ring $\mathbb{Z}[\sqrt{3}]$ is Euclidean, with as function $g: \mathbb{Z}[\sqrt{3}] \rightarrow \mathbb{Z}_{\geq 0}$ the one defined as $g(a+b \sqrt{3}):=\left|a^{2}-3 b^{2}\right|$.
(d) Show that $\varphi: \mathbb{Z}[\sqrt{3}] \rightarrow \mathbb{F}_{11}$ given by the rule $\varphi(a+b \sqrt{3})=$ $(a+5 b) \bmod 11$, is a homomorphism of rings.
(e) With φ as in (d), show that $\operatorname{Ker}(\varphi)=\mathbb{Z}[\sqrt{3}] \cdot 11+\mathbb{Z}[\sqrt{3}] \cdot(-5+\sqrt{3})$.
(f) Again with notations as in (d), find (prove your claim!) $\alpha \in \mathbb{Z}[\sqrt{3}]$ such that $\operatorname{Ker}(\varphi)=\mathbb{Z}[\sqrt{3}] \cdot \alpha$.
(2) $\mathrm{By} \mathrm{M}_{2}\left(\mathbb{F}_{2}\right)$ we denote the ring consisting of all 2×2 matrices with coefficients in \mathbb{F}_{2}. Let $\varphi=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \in \mathrm{M}_{2}\left(\mathbb{F}_{2}\right)$. Furthermore, $\mathrm{ev}_{\varphi}: \mathbb{F}_{2}[x] \rightarrow \mathrm{M}_{2}\left(\mathbb{F}_{2}\right)$ denotes evaluation at φ.
(a) Is ev_{φ} surjective?
(b) Show that $x^{2}+x+1$ is the minimal polynomial of φ.
(c) Is $\operatorname{Ker}\left(\mathrm{ev}_{\varphi}\right)$ a prime ideal?
(d) ${\operatorname{Is~} \mathrm{ev}_{\varphi}\left(\mathbb{F}_{2}[x]\right) \text { a field? }}^{\text {a }}$
(e) Determine a generator of the ideal $\operatorname{Ker}\left(\mathrm{ev}_{\varphi}\right) \subset \mathbb{F}_{2}[x]$.
(f) How many elements does $\left(\mathbb{F}_{2}[x] / \operatorname{Ker}\left(\mathrm{ev}_{\varphi}\right)\right)^{\times}$have?
(3) Consider $f:=x^{3}-2 \in \mathbb{F}_{7}[x]$ and $R:=\mathbb{F}_{7}[x] / f \cdot \mathbb{F}_{7}[x]$.
(a) Show that $f \in \mathbb{F}_{7}[x]$ is irreducible.
(b) Prove that R is a field.
(c) Prove that $R \cong \mathbb{F}_{7}[y] /\left(y^{3}-y+2\right)$.
(d) How many elements does the splitting field of f over \mathbb{F}_{7} have?
(e) Let α be a zero of f in the splitting field Ω of f over \mathbb{F}_{7}. What is the order of $\alpha \in \Omega^{\times}$?
(f) By $\varphi\left(a+b x+c x^{2} \bmod f\right)=a+4 b x+2 c x^{2} \bmod f$ we define a map $\varphi: R \rightarrow R$. Show that φ is an automorphism of the $\operatorname{ring} R$, and that φ has order 3 in $\operatorname{Aut}(R)$.

