Exam Algebraic Structures June 21st, 2018, 14:00 – 17:00, Kapteynborg 0013.

This exam consists of three exercises, and each of them has six subproblems. You get 6 points for free, and you can score 3 points for every correctly answered subproblem. In this way you can obtain at most 60 point for the total exam. Only answers given with a complete argument will be considered!

- (1) Consider the subring $\mathbb{Z}[\sqrt{3}] := \{a + b\sqrt{3} : a, b \in \mathbb{Z}\} \subset \mathbb{C}.$
 - (a) Find an element $\neq \pm 1$ in $\mathbb{Z}[\sqrt{3}]^{\times}$.
 - (b) Show that $\mathbb{Z}[\sqrt{3}]^{\times}$ is an infinite set.
 - (c) Prove that the ring $\mathbb{Z}[\sqrt{3}]$ is Euclidean, with as function $g: \mathbb{Z}[\sqrt{3}] \to \mathbb{Z}_{\geq 0}$ the one defined as $g(a+b\sqrt{3}) := |a^2-3b^2|$.
 - (d) Show that $\varphi \colon \mathbb{Z}[\sqrt{3}] \to \mathbb{F}_{11}$ given by the rule $\varphi(a+b\sqrt{3}) = (a+5b) \mod 11$, is a homomorphism of rings.
 - (e) With φ as in (d), show that $\operatorname{Ker}(\varphi) = \mathbb{Z}[\sqrt{3}] \cdot 11 + \mathbb{Z}[\sqrt{3}] \cdot (-5 + \sqrt{3}).$
 - (f) Again with notations as in (d), find (prove your claim!) $\alpha \in \mathbb{Z}[\sqrt{3}]$ such that $\operatorname{Ker}(\varphi) = \mathbb{Z}[\sqrt{3}] \cdot \alpha$.
- (2) By $M_2(\mathbb{F}_2)$ we denote the ring consisting of all 2×2 matrices with coefficients in \mathbb{F}_2 . Let $\varphi = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{F}_2)$. Furthermore, $ev_{\varphi} \colon \mathbb{F}_2[x] \to M_2(\mathbb{F}_2)$ denotes evaluation at φ .
 - (a) Is ev_{φ} surjective?
 - (b) Show that $x^2 + x + 1$ is the minimal polynomial of φ .
 - (c) Is $\operatorname{Ker}(\operatorname{ev}_{\varphi})$ a prime ideal?
 - (d) Is $ev_{\varphi}(\mathbb{F}_2[x])$ a field?
 - (e) Determine a generator of the ideal $\operatorname{Ker}(\operatorname{ev}_{\varphi}) \subset \mathbb{F}_2[x]$.
 - (f) How many elements does $(\mathbb{F}_2[x]/\operatorname{Ker}(\operatorname{ev}_{\varphi}))^{\times}$ have?
- (3) Consider $f := x^3 2 \in \mathbb{F}_7[x]$ and $R := \mathbb{F}_7[x]/f \cdot \mathbb{F}_7[x]$.
 - (a) Show that $f \in \mathbb{F}_7[x]$ is irreducible.
 - (b) Prove that R is a field.
 - (c) Prove that $R \cong \mathbb{F}_7[y]/(y^3 y + 2)$.
 - (d) How many elements does the splitting field of f over \mathbb{F}_7 have?
 - (e) Let α be a zero of f in the splitting field Ω of f over \mathbb{F}_7 . What is the order of $\alpha \in \Omega^{\times}$?
 - (f) By $\varphi(a+bx+cx^2 \mod f) = a+4bx+2cx^2 \mod f$ we define a map $\varphi \colon R \to R$. Show that φ is an automorphism of the ring R, and that φ has order 3 in Aut(R).